(b)

2022

Time - 3 hours

Full Marks - 60

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

Candidates are required to answer
in their own words as far as practicable.

GROUP - A

1. Ans	swer all questions and fill in blanks as required.	[1 × 8
(a)	State the unit of Poynting vector.	

- (c) For perfect di-electric, the value of conductivity is _____.
- (d) State the unit of skin depth.

Identify the equation $\vec{\nabla} \cdot \vec{D} = \rho$.

- (e) For which colour, the critical angle is maximum for water air interface?
- (f) What is the value of reflection coefficients for total internal reflection?
- (g) Give examples of one +ve and one -ve birefringent crystals.

(h) Polarisation of light shows that light waves are ______in nature.

GROUP - B

- Answer any eight of the following questions within two to three sentences each.
 - (a) Define specific rotation.
 - (b) Give one limitation of Nicol prism.
 - (c) Why is Brewster's angle known as polarising angle?
 - (d) Define electro-magnetic energy density.
 - (e) What is the condition of Lorentz gauge?
 - (f) Show that in a good conductor, the skin depth is much smaller than the wave-length.
 - (g) Write the boundary condition for electric displacement vector. Is it continuous at the interface?
 - (h) What is the working principle of Babinet's compensator?
 - (i) Write Maxwell's electro-magnetic wave equation (one) both in differential and integral form.
 - (j) State Snell's law of refraction and write its mathematical form.

GROUP - C

- 3. Answer any eight of the following questions within 75 words each.
 [2 × 8
 - (a) Explain with diagrams parallel and crossed nicols.
 - (b) Find the thickness of quarter-wave-plate for light of wave-length 4800 Å. Given that $(\mu_0 \mu_e) = 0.0058$.
 - (c) Find the specific rotation of sugar solution of plane of polarisation is turned through 11⁰ if the length of tube containing 20% sugar solution is 20 cm.
 - (d) What is physical significance of Poynting vector?
 - (e) Show that curl of $\left[\vec{E} + \frac{\partial \vec{A}}{\partial t}\right]$ vanishes.
 - (f) Write electro-magnetic wave equation for magnetic intensity and express each term.
 - (g) What are the characteristics of uniform plane-wave?
 - (h) Explain briefly plasma frequency.
 - (i) A wave propagates from a di-electric medium to interface with free-space. If the angle of incident is the critical angle of 30°, then find the relative permittivity.
 - (j) Explain the meaning of Coulomb Gauss and Lorentz Gauss.

GROUP - D

Answer any four questions within 500 words each.

- 4. Derive electro-magnetic wave equation for electric field vector using Maxwell's equation. [6]
- Write Maxwell's four equations. Derive any two equations and give their physical significance.
- 6. Derive boundary conditions satisfied by the electro-magnetic field-vector \vec{E} . Explain relaxation time. [6
- Explain total internal reflection on the basis of electro-magnetic theory of light and hence explain evanescent waves.
- Discuss construction and working of Nicol prism. Explain briefly use of Nicol prism as polariser and analyser.
- 9. Explain quarter wave-plate. Find out the thickness of a quarter wave-plate. How it is used to produce circularly and elliptically polarised light?
- 10. Write Biot's laws of Rotatory polarisation. Briefly explain Fresnel's theory of optical rotation. A tube of sugar solution 20 cm long is placed between two crossed Nicols. If the optical rotation produced is 10^{0} and specific rotation is 66^{0} , find the strength of the solution if light of wave-length 6000 Å is used. [2+2+2]

2022

Time - 3 hours

Full Marks - 60

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

Candidates are required to answer
in their own words as far as practicable.

GROUP - A

1.	Ans	wer <u>all</u> questions and fill in blanks as required. $[1 \times 8]$
	(a)	The condition for thermal equilibrium of two subsystems is equality of
	(b)	Is entropy an extensive quantity or intensive quantity?
	(c)	The equation of state for a classical ideal gas is
	(d)	The partition function is defined as Z =
	(e)	Which statistics is applied to photons?
	(f)	In quantum statistics, the particles are
	(g)	The value of Stefan's constant is
	(h)	The absolute temperature of a perfect black body is increased to twice its value. The rate of emission of energy per unit area will become

GROUP - B

- Answer any eight of the following questions within two to three sentences each.
 - (a) How do you specify a microstate in classical statistical mechanics?
 - (b) Define ensemble.
 - (c) What is phase space?
 - (d) Using equipartition theorem, derive Dulong and Petit's law of specific heat.
 - (e) Write the conditions for a system to have negative temperature.
 - (f) Define Fermi energy.
 - (g) How do you define a quantum microstate?
 - (h) What is a black body?
 - (i) What is ultraviolet catastrophe?
 - (j) Radiation from the Big Bang has been Doppler shifted to longer wavelengths by the expansion of the universe and today has a spectrum corresponding to that of a black body at 2.7 K. Find the wavelength at which the energy density of this radiation is a maximum.

GROUP - C

- Answer <u>any eight</u> of the following questions within 75 words each.
 2 × 8
 - (a) Distinguish between microcanonical and canonical ensembles.
 - (b) Briefly explain the partition function.
 - (c) What is grand canonical ensemble? How does it differ from canonical ensemble?
 - (d) What is Gibb's paradox?
 - (e) Deduce Sackur-Tetrode relation using partition function.
 - (f) Distinguish between fermions and bosons.
 - (g) What is Bose-Einstein condensate?
 - (h) Show that Planck's law reduces to Wien's law for shorter wavelenghts and Rayleigh-Jean's law for longer wavelengths.
 - (i) State and prove Kirchhoff's law of radiation.
 - (j) What are the properties of thermal radiation?

GROUP - D

Answer any four questions within 500 words each.

Define entropy and thermodynamic probability. Establish a relation between them.

5.	Derive the Maxwell-Boltzmann distribution law.	[6
6.	Derive an expression for the entropy of a classical ideal gas, ing microcanonical ensemble.	us [8
7.	State and prove the law of equipartition of energy.	[6
8.	Derive the expression for the Fermi-Dirac distribution law.	[6
9.	Prove the Stefan-Boltzmann law.	[6
10.	Derive Planck's radiation formula.	[6

2022

Time - 3 hours

Full Marks - 60

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

Candidates are required to answer
in their own words as far as practicable.

GROUP - A

- Answer all questions and fill in blanks as required. [1 × 8]
 (a) State the unit of Poynting vector.
 (b) Identify the equation ∇ · D = p.
 (c) For perfect di-electric, the value of conductivity is
 - (d) State the unit of skin depth.
 - (e) For which colour, the critical angle is maximum for water air interface?
 - (f) What is the value of reflection coefficients for total internal reflection?
 - (g) Give examples of one +ve and one -ve birefringent crystals.

(h) Polarisation of light shows that light waves are _____in nature.

GROUP - B

- 2. Answer any eight of the following questions within two to three sentences each. [11/2 × 8
 - (a) Define specific rotation.
 - (b) Give one limitation of Nicol prism.
 - (c) Why is Brewster's angle known as polarising angle?
 - (d) Define electro-magnetic energy density.
 - (e) What is the condition of Lorentz gauge?
 - (f) Show that in a good conductor, the skin depth is much smaller than the wave-length.
 - (g) Write the boundary condition for electric displacement vector. Is it continuous at the interface?
 - (h) What is the working principle of Babinet's compensator?
 - (i) Write Maxwell's electro-magnetic wave equation (one) both in differential and integral form.
 - (j) State Snell's law of refraction and write its mathematical form.

GROUP - C

- Answer <u>any eight</u> of the following questions within 75 words each.
 [2 × 8]
 - (a) Explain with diagrams parallel and crossed nicols.
 - (b) Find the thickness of quarter-wave-plate for light of wave-length 4800 Å. Given that $(\mu_0 \mu_e) = 0.0058$.
 - (c) Find the specific rotation of sugar solution of plane of polarisation is turned through 11⁰ if the length of tube containing 20% sugar solution is 20 cm.
 - (d) What is physical significance of Poynting vector?
 - (e) Show that curl of $\left[\vec{E} + \frac{\partial \vec{A}}{\partial t}\right]$ vanishes.
 - (f) Write electro-magnetic wave equation for magnetic intensity and express each term.
 - (g) What are the characteristics of uniform plane-wave?
 - (h) Explain briefly plasma frequency.
 - (i) A wave propagates from a di-electric medium to interface with free-space. If the angle of incident is the critical angle of 30°, then find the relative permittivity.
 - (j) Explain the meaning of Coulomb Gauss and Lorentz Gauss.

GROUP - D

Answer any four questions within 500 words each.

- 4. Derive electro-magnetic wave equation for electric field vector using Maxwell's equation. [6]
- Write Maxwell's four equations. Derive any two equations and give their physical significance. [6
- 6. Derive boundary conditions satisfied by the electro-magnetic field-vector \vec{E} . Explain relaxation time. [6
- Explain total internal reflection on the basis of electro-magnetic theory of light and hence explain evanescent waves. [6
- 8. Discuss construction and working of Nicol prism. Explain briefly use of Nicol prism as polariser and analyser. [6]
- 9. Explain quarter wave-plate. Find out the thickness of a quarter wave-plate. How it is used to produce circularly and elliptically polarised light?
- 10. Write Biot's laws of Rotatory polarisation. Briefly explain Fresnel's theory of optical rotation. A tube of sugar solution 20 cm long is placed between two crossed Nicols. If the optical rotation produced is 10° and specific rotation is 66°, find the strength of the solution if light of wave-length 6000 Å is used.
 [2 + 2 + 2]